Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biochem Funct ; 41(8): 1305-1318, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37792847

RESUMO

The intrinsic redox status of cancer cells limits the efficacy of chemotherapeutic drugs. Auranofin, a Food and Drug Administration-approved gold-containing compound, documented with effective pharmacokinetics and safety profiles in humans, has recently been repurposed for anticancer activity. This study examined the paclitaxel-sensitizing effect of auranofin by targeting redox balance in the MDA-MB-231 and MCF-7 breast cancer cell lines. Auranofin treatment depletes the activities of superoxide dismutase, catalase, and glutathione peroxidase and alters the redox ratio in the breast cancer cell lines. Furthermore, it has been noticed that auranofin augmented paclitaxel-mediated cytotoxicity in a concentration-dependent manner in both MDA-MB-231 and MCF-7 cell lines. Moreover, auranofin increased the levels of intracellular reactive oxygen species (observed using 2, 7-diacetyl dichlorofluorescein diacetate staining) and subsequently altered the mitochondrial membrane potential (rhodamine-123 staining) in a concentration-dependent manner. Further, the expression of apoptotic marker p21 was found to be higher in auranofin plus paclitaxel-treated breast cancer cells compared to paclitaxel-alone treatment. Thus, the present results illustrate the chemosensitizing property of auranofin in MDA-MB-231 and MCF-7 breast cancer cell lines via oxidative metabolism. Therefore, auranofin could be considered a chemosensitizing agent during cancer chemotherapy.


Assuntos
Neoplasias da Mama , Paclitaxel , Humanos , Feminino , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Auranofina/farmacologia , Auranofina/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Oxirredução , Linhagem Celular Tumoral , Células MCF-7 , Apoptose
2.
Microbiol Res ; 261: 127070, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35623162

RESUMO

The gram-positive bacterium Deinococcus radiodurans can survive under extreme ionizing radiation environment. This study aims to rationalize the role of redox balance, antioxidant status, and metabolite content on the radiation survival of D. radiodurans. We found that the TrxR inhibitors, i.e., ebselen, auranofin, and epigallocatechin gallate (EGCG) (10 µM) treatment affects the radiation survival of D. radiodurans. The TrxR inhibitors treatment affects the redox status, activities of antioxidant enzymes, increases the intracellular ROS levels and protein carbonylation upon 4 kGy ionizing radiation treatments. Moreover, the alteration in cellular redox status affects the metabolites content of the organism. In addition, we noticed differential metabolomic profiles in sham control, radiation control (4 kGy), and TrxR inhibitors plus radiation-treated D. radiodurans. The TrxR inhibitors plus radiation treated groups exhibit more variation compare to sham control and 4 kGy radiation-exposed D. radiodurans. Further, some novel metabolites can possess the high antioxidant property and involved in vital cellular metabolism were found in sham control and radiation treated cells of D. radiodurans. Thus, the results illustrate the role of intracellular redox status in the survival and metabolomic profile of D. radiodurans.


Assuntos
Deinococcus , Antioxidantes/metabolismo , Proteínas de Bactérias/metabolismo , Deinococcus/metabolismo , Oxirredução , Radiação Ionizante , Tiorredoxina Dissulfeto Redutase/metabolismo
3.
Front Cell Dev Biol ; 8: 707, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850827

RESUMO

Extremophilic organisms have the potential to tolerate extremely challenging environments of nature. This property can be accredited to its production of novel secondary metabolites that possess anticancer and other pharmaceutical values. The present study was aimed to investigate the anticancer activity of crude secondary metabolite extract (CSME) obtained from the radiation-tolerant bacterium Deinococcus radiodurans in triple-negative human breast carcinoma (MDA-MB-231) cells. The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay showed the antiproliferative potential of CSME in MDA-MB-231 cells (IC50 = 25 µg/ml) and MCF-7 cells (IC50 = 10 µg/ml). Further, the CSME treatment led to the production of intracellular reactive oxygen species (ROS) and nuclear membrane alterations with the formation of apoptotic bodies in MDA-MB-231 cells. Considerable DNA damage and low antioxidant status were observed in CSME-treated MDA-MB-231 cells. The results also showed that the CSME treatment induced apoptotic markers expression in MDA-MB-231 cells. Western blot results illustrated significant upregulation of p53, caspase-3, and caspase-9 proteins expression. Then, we analyzed the presence of secondary metabolites which may be linked with antiproliferative potential of CSME by gas chromatography-mass spectrometry (GC-MS). The results illustrated the presence of 23 bioactive compounds some of which are already reported to possess anticancer properties. The study indicates that the CSME of D. radiodurans possess anticancer properties and exhibit the potential to be used as an anticancer agent.

4.
Biofouling ; 36(3): 351-367, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32401555

RESUMO

Pseudomonas aeruginosa and Serratia marcescens are prominent members belonging to the group of ESKAPE pathogens responsible for Urinary Tract Infections (UTI) and nosocomial infections. Both the pathogens regulate several virulence factors, including biofilm formation through quorum sensing (QS), an intercellular communication mechanism. The present study describes the anti-biofilm and QS quenching effect of thiazolinyl-picolinamide based palladium(II) complexes against P. aeruginosa and S. marcescens. Palladium(II) complexes showed quorum sensing inhibitory potential in inhibiting swarming motility behaviour, pyocyanin production and other QS mediated virulence factors in both P. aeruginosa and S. marcescens. In addition, the establishment of biofilms was prevented on palladium (II) coated catheters. Overall, the present study demonstrates that thiazolinyl-picolinamide based palladium (II) complexes will be a promising strategy to combat device-mediated UTI infections.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Paládio/farmacologia , Ácidos Picolínicos/química , Tiazóis/química , Cateteres Urinários/microbiologia , Antibacterianos/química , Antibacterianos/toxicidade , Biofilmes/crescimento & desenvolvimento , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/química , Complexos de Coordenação/toxicidade , Infecção Hospitalar/prevenção & controle , Humanos , Células MCF-7 , Paládio/química , Paládio/toxicidade , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Piocianina/metabolismo , Percepção de Quorum/efeitos dos fármacos , Serratia marcescens/efeitos dos fármacos , Serratia marcescens/metabolismo , Infecções Urinárias/microbiologia , Infecções Urinárias/prevenção & controle , Virulência , Fatores de Virulência/metabolismo
5.
Phys Rev E ; 93(3): 033108, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27078448

RESUMO

In this work we investigate the dynamics of inertial particles using finite-time Lyapunov exponents (FTLE). In particular, we characterize the attractor and repeller structures underlying preferential concentration of inertial particles in terms of FTLE fields of the underlying carrier fluid. Inertial particles that are heavier than the ambient fluid (aerosols) attract onto ridges of the negative-time fluid FTLE. This negative-time FTLE ridge becomes a repeller for particles that are lighter than the carrier fluid (bubbles). We also examine the inertial FTLE (iFTLE) determined by the trajectories of inertial particles evolved using the Maxey-Riley equations with nonzero Stokes number and density ratio. Finally, we explore the low-pass filtering effect of Stokes number. These ideas are demonstrated on two-dimensional numerical simulations of the unsteady double-gyre flow.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...